
Agda, Full Adders, and Flags

Dennis Sprokholt

July 2022

1 Introduction

Machine instruction semantics are often difficult to grasp. Especially the effect of an in-
struction on CPU flags is mysterious, which is often merely described in prose. For me,
rigorous formal definitions often dispel this veil of mystery. To achieve that, we define in-
struction semantics from the ground up in a principled way. This is a small step-by-step
guide on doing so in Agda. In particular, we look at ripple carry circuits and the semantics
of the carry and overflow flags.

2 Bits

We first define bits.

data Bit : Set where
O : Bit
I : Bit

Then, we define several common bitwise operators:

not : Bit → Bit
not O = I
not I = O

or : Bit → Bit → Bit
or O y = y
or I y = I

and : Bit → Bit → Bit
and O y = O
and I y = y

xor : Bit → Bit → Bit
xor O y = y
xor I y = not y

Now, let’s look at their corresponding logic gates:

x not x
x
y

or x y

x
y

and x y
x
y

xor x y

3 Adder Circuits

Now we will gradually build more complex circuits. Consider the half adder in Figure 1.

Figure 1: Half Adder

carry / and x y

x
y

sum / xor x y

The carry bit represents the ”leftover bit” in a higher position. For instance, in the decimal
system, 8 + 7 = 5 carrying 1; It represents 15, but that does not fit in a single digit.
We define this circuit in Agda as:

half-adder : Bit → Bit → Bit × Bit
half-adder x y = (and x y , xor x y)

Using two half adders, we can construct a full adder, as shown in Figure 2.

Figure 2: Full Adder

x

y

cin

cout

sum

Which we similarly compose of half-adders in our Agda definition:

full-adder : Bit → Bit → Bit → Bit × Bit
full-adder x y cin =
let (c1 , s1) = half-adder x y

(c2 , s2) = half-adder s1 cin
in (or c1 c2 , s2)

Table 1 contains the full corresponding truth table; It should help get an intuition for the
carry bit (cout).

Table 1: Full Adder Truth Table

x y cin cout sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

4 Subtractor Circuits

Similarly to adders, we can define subtractors. Consider the half-subtractor in Figure 3.

Figure 3: Half Subtractor

borrow / and (not x) y

x
y

difference / or x y

A subtractor does not have a carry bit. It has a borrow bit instead. The half-subtractor’s
truth table is given in Table 2.

Table 2: Half Subtractor Truth Table

x y borrow difference

0 0 0 0

0 1 1 1

1 0 0 1

1 1 0 0

Clearly, 0−0 = 0, 1−0 = 1, and 1−1 = 0. The notable case is 0−1, whose difference doesn’t
fit in a single bit. Intuitively, we borrow a bit from the next position – which represents 2
– and subtract from it. Its result is thus 2 − 1 = 1. Of course, we need to remember that
we borrowed a bit. We define the half subtractor in Agda as:

half-subtractor : Bit → Bit → Bit × Bit
half-subtractor x y = (and (not x) y , xor x y)

Similarly to the full adder, we compose two half-subtractors to create a full-subtractor,
which we give in Figure 4.

Figure 4: Full Subtractor

x

y

bin

bout

difference

Which in Agda becomes:

full-subtractor : Bit → Bit → Bit → Bit × Bit
full-subtractor x y bin =
let (b1 , d1) = half-subtractor x y

(b2 , d2) = half-subtractor d1 bin
in (or b1 b2 , d2)

Table 3 is its truth table.

Table 3: Full Subtractor Truth Table

x y bin bout difference

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

The value of bin represents the “remembered” borrow bit by subtractions in the previous
(lower) position. Intuitively, the full subtractor computes x− y− bin.

5 Higher-Order Circuits

One could observe that the composition of half adders into full adders (Figure 2) is identical
to the composition of half subtractors into full subtractors (Figure 4). Hence, we can
generalize over that structure, resulting in “higher-order circuits”, if you will.

-- | Converts half adders/subtractors to their full counterparts

lift : (Bit → Bit → Bit × Bit)

→ (Bit → Bit → Bit → Bit × Bit)
lift f x y cin =
let (c1 , s1) = f x y

(c2 , s2) = f s1 cin
in (or c1 c2 , s2)

full-adder2 = lift half-adder

full-subtractor2 = lift half-subtractor

Of course, these new versions are definitionally equal to our previous functions:

: full-adder ≡ full-adder2
= refl

: full-subtractor ≡ full-subtractor2
= refl

6 Bitvectors

With addition and subtraction on bits, we can extend these operations to bitvectors. First,
we define bitvectors (of length n) as:

Bv : N → Set
Bv n = Vec Bit n

So, now we can – for instance – construct the bitvector (of length 4) representingA 510,
which is 01012 in binary. In Agda that becomes:

five : Bv 4
five = O :: I :: O :: I :: []

7 Ripple Carry Circuits

Now we compose the bitvector adders from the full-adders for bits. Intuitively, the carry
”ripples upwards”, to the higher-positioned bits. Figure 5 illustrates this.

Figure 5: Ripple Carry Adder (of length 4)

Full
Adder

Full
Adder

Full
Adder

Full
Adder

s3 s2 s1 s0

x3 y3 x2 y2 x1 y1 x0 y0

cin
c1c2c3cout

The “ripple borrow subtractor” has the same structure. Hence, in the Agda implementation
we can generalize over that “ripple”-structure.

-- | Lifts a full-adder/subtractor to its bitvector variant.

ripple : (Bit → Bit → Bit → Bit × Bit)

→ (Bv n → Bv n → Bit → Bit × Bv n)
ripple f [] [] cin = (cin , [])
ripple f (x :: xs) (y :: ys) cin =
let (c1 , xs+ys) = ripple f xs ys cin

(c2 , x+y) = f x y c1
in (c2 , x+y :: xs+ys)

ripple-adder ripple-subtractor : Bv n → Bv n → Bit → Bit × Bv n
ripple-adder = ripple full-adder2
ripple-subtractor = ripple full-subtractor2

ANotation: x10 is in the decimal system whereas x2 is in binary.

8 Specification Testing

We can now test our specification:

-- # Adder

-- | 6 + 3 + 0 = 9

: ripple-adder (O :: I :: I :: O :: []) (O :: O :: I :: I :: []) O ≡ (O , (I :: O :: O :: I :: []))
= refl

-- | 9 + 11 + 1 = 21 = 16 + 5

: ripple-adder (I :: O :: O :: I :: []) (I :: O :: I :: I :: []) I ≡ (I , (O :: I :: O :: I :: []))
= refl

-- # Subtractor

-- | 6 - 3 - 0 = 3

: ripple-subtractor
(O :: I :: I :: O :: []) (O :: O :: I :: I :: []) O ≡ (O , (O :: O :: I :: I :: []))
= refl

-- | 9 - 11 - 1 = -3 = (-16) + 13

: ripple-subtractor (I :: O :: O :: I :: []) (I :: O :: I :: I :: []) I ≡ (I , I :: I :: O :: I :: [])
= refl

The subtraction in the final test case resolves to a negative number in the decimal system
(−310). Yet, that has no representation as bitvectorB. Note that its decimal representa-
tion is only given for illustrative purposes; It is irrelevant for the semantics of bitvector
subtraction, as the circuits precisely capture it.
Working with a proof assistant does not guarantee correctness; After all, our specifications

could be erroneous. Checking the correctness of a specification is a matter of validation
w.r.t. intended characteristics. Hence, we provide tests.

9 Flags

Now that we have correct specifications for bitvector addition and subtraction, we can
include specifications for their effect on CPU flags. We discuss the semantics – in both x86
and Armv8 – for:

• the carry flag (CF) and

• the overflow flag (OF).

BWe assume bitvectors are not inherently signed or unsigned.

9.1 Carry Flag

The carry flag for addition is identical between the two architectures.

add-CF : Bv n → Bv n → Bit
add-CF x y = proj1 (ripple-adder x y O)

However, for subtraction their carry flags are inverted. The x86 manual[1] states:

Carry flag – Set if an arithmetic operation generates a carry or a borrow out of the
most significant bit of the result; cleared otherwise. . . .

Hence, after executing the SUB instruction, the carry flag represents the borrow bit:

x86-sub-CF : Bv n → Bv n → Bit
x86-sub-CF x y = proj1 (ripple-subtractor x y O)

The Armv8 manual[2, C6.2.318-320] states:

operand2 = NOT(operand2);

(result , nzcv) = AddWithCarry(operand1 , operand2 , ’1’);

PSTATE.<N,Z,C,V> = nzcv;

Which means that it defines SUBS with “AddWithCarry”. Hence, it also affects the flags as
such. Our specification follows the Arm manual:

Armv8-sub-CF : Bv n → Bv n → Bit
Armv8-sub-CF x y = proj1 (ripple-adder x (map not y) I)

We can show that the Armv8 CF is the inverse (not) of x86’s CF:

CF-inv : ∀ (x y : Bv n) → x86-sub-CF x y ≡ not (Armv8-sub-CF x y)
-- proof omitted

9.2 Overflow Flag

The overflow flag is similar to the carry flag. Whereas the carry flag signifies that the result
of unsigned arithmetic does not fit in a register, the overflow flag signifies that the signed
result does not fit. Integer operations in machines are not inherently signed or unsigned.
x86 and Armv8 set flags for both cases; It is up to the programmer to read the appropriate
flag for their use case.

The x86 manual[1] states:

Overflow flag — Set if the integer result is too large a positive number or too small
a negative number (excluding the sign-bit) to fit in the destination operand; cleared
otherwise. This flag indicates an overflow condition for signed-integer (two’s com-
plement) arithmetic.

The Arm manual[2] similarly states:

Overflow Condition flag. Set to:

• 1 if the instruction results in an overflow condition, for example a signed over-
flow that is the result of an addition.

• 0 otherwise.

For addition, both architectures behave similarly. We compute the overflow flag by xoring
the incoming and outgoing carry bit of the most-significant adderC:

add-OF : Bv (suc n) → Bv (suc n) → Bit
add-OF (x :: xs) (y :: ys) =
let cin = proj1 (ripple-adder xs ys O)

cout = proj1 (full-adder x y cin)
in xor cin cout

This satisfies both prose specifications, which we can test as follows:

-- | (-3) + (-6) = -9 = (-8) + (-1) => overflow

: add-OF (I :: I :: O :: I :: []) (I :: O :: I :: O :: []) ≡ I
= refl

-- | (-5) + 1 = -4 => no overflow

: add-OF (I :: O :: I :: I :: []) (O :: O :: O :: I :: []) ≡ O
= refl

However, for subtraction, their specifications are different. In x86, subtraction’s OF follows
from the definitions of subtraction, which we modelled with the ripple subtractor:

x86-sub-OF : Bv (suc n) → Bv (suc n) → Bit
x86-sub-OF (x :: xs) (y :: ys) =
let bin = proj1 (ripple-subtractor xs ys O)

bout = proj1 (full-subtractor x y bin)
in xor bin bout

CWe use Bv (suc n), because 0-bit bitvectors have no MSB, and thus no cin and cout.

Two test cases that demonstrate it makes sense:

-- | (-3) - 6 = -9 = (-8) - 1 => overflow

: x86-sub-OF (I :: I :: O :: I :: []) (O :: I :: I :: O :: []) ≡ I
= refl

-- | (-1) - 7 = -8 => no overflow

: x86-sub-OF (I :: I :: I :: I :: []) (O :: I :: I :: I :: []) ≡ O
= refl

In Arm – like before – subtraction is defined in terms of addition. The definition of OFD for
subtraction also builds on addition, which we modelled with the ripple adder :

Armv8-sub-OF : Bv (suc n) → Bv (suc n) → Bit
Armv8-sub-OF (x :: xs) (y :: ys) =
let cin = proj1 (ripple-adder xs (map not ys) I)

cout = proj1 (full-adder x (not y) cin)
in xor cin cout

Interestingly, though both are computed differently, the value of OF is identical between
x86 and Armv8 (for the same operands):

OF-eq : ∀ (x y : Bv (suc n)) → x86-sub-OF x y ≡ Armv8-sub-OF x y
-- proof omitted

10 Conclusion

We formalized the semantics of two bitvector operations in Agda (being addition and sub-
traction). We did this in a principled way, by analyzing the circuits and modeling our
semantics accordingly. We also looked at – and modelled – the carry and overflow flags
for the x86 and Armv8 architectures. Both architectures set the flags similarly, but differ
on the carry flag for subtraction. Additionally, we provided some test cases to validate our
models.
More generally, this document aims to serve as a brief guide on accurately specifying ISA

semantics. As a final note, proof assistants – particularly Agda – are an invaluable tool for
exploring semantic models, and often help to uncover subtle properties.

DOF is actually called V in Arm

References

[1] Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s Manual - Com-
bined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4, April 2022.

[2] Arm Limited, Arm Architecture Reference Manual Armv8, for Armv8-A architecture
profile, 2021.

	Introduction
	Bits
	Adder Circuits
	Subtractor Circuits
	Higher-Order Circuits
	Bitvectors
	Ripple Carry Circuits
	Specification Testing
	Flags
	Carry Flag
	Overflow Flag

	Conclusion

